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The nonlinear and two-dimensional problem of heating of a plane plate in a solar furnace with a Gaussian
distribution of the radiant heat flux over the surface has been reduced to the one-dimensional problem by in-
troducing a nondifferentiable parameter dependent on the radial coordinate. Using the modified Goodman
heat-balance integral method, we have obtained estimates of the minimum heat flux necessary for fusion of
the surface of the plate and the limiting diameter of the melt hole. An example of calculating the dynamics
of fusion of the surface of a ceramic plate is presented.

Introduction. In the first part of this work [1], it has been shown that the processes of heat treatment of
products in solar furnaces can be calculated by integral methods of calculation of the nonlinear problems of heat con-
duction in the cases where a radiant-energy flux is uniformly distributed over the focal-spot area. These methods are,
as a rule, applied to one-dimensional (plane, cylindrical, and spherical) problems. However, in solar furnaces, such an
energy distribution occurs only over a small part of the focal-spot area (unless additional technical measures are taken).
Because of the special properties of paraboloid concentrators of solar radiation and errors in their production, the radi-
ant energy flux is nonuniformly distributed over the focal-spot area by a nearly Gaussian law; in such cases, one-di-
mensional models are inapplicable. We have made an effort to modify one integral method for solution of the
nonlinear problem of heating of a plate by a nonuniform radiant-energy flux.

Method of Approximate Solution of the Problem on Heating of a Plate by a Nonuniform Flux. In the
presence of axial symmetry, the heat-conduction equation for a material with constant thermophysical properties has
the form
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The heat flux incident on the surface of a plate is described by the Gaussian law
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The success in solving the problem by an approximate integral method essentially depends on how exactly the
form of the approximating function is predicted. In this connection, we note that when there is no radiation from the
surface, the heat flux penetrating into the plate is distributed by the exponential law (2); therefore, the heat flux in the
plate in the z direction can be represented in the form of a product:

qz = qz
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Expression (3) is exact if it is proposed to find qz′  using the initial heat-conduction equation (1), which, apparently, can
be written in terms of the heat flux:
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We will consider (3) as a formula for approximation of the heat flux, in which the function Φ(r) reflects the
main, strongest dependence of the heat flux on the radial coordinate. Unlike the exact expression, the coordinate r in
qz′  will be considered as a parameter, i.e., we will not differentiate qz′  with respect to r. This method is similar to the
introduction of varied and nonvaried functions in the method implementing the "principle of minimum entropy produc-
tion" of Prigogine [2]. The temperature approximation is found by integrating (3) with respect to z. If the adopted con-
dition is met, substitution of (3) into (4) gives
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Let us introduce the approximation form parameter δ(r, t) — "heat-penetration depth," which is characterized by the
fact that at z ≥ δ(r, t) the heat flux is equal to zero and the temperature is equal to the initial temperature (T = 0) and
is determined by the formula

T = 
Φ (r)
λ

 ∫ 
z

δ

qz
′ dz . (6)

Integrating (5) with respect to z and taking account of (6), we can obtain an equation analogous to (5) for the tem-
perature:
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Thus, we have obtained the one-dimensional equation of heat conduction with heat sink that reflects the
spreading of the heat flux from the point of its supply and is proportional to αT.

The boundary condition on the heated surface (z = 0) is
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The heat-balance integral method of Goodman [3] and its variants [4] give good results precisely for one-dimensional
equations. We take the approximation

T = T0 (1 − ξ)n ,   ξ = 
z
δ

and integrate Eq. (7) with respect to the coordinate z between the limits 0 ≤ z ≤ δ(r, t):
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Boundary condition (8) will take the form

qi0Φ (r) = 
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4
 . (10)
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If the index n is given, (9) and (10) solve the problem completely since they involve two unknown functions: T0 and
δ. To decrease the error in the approximate calculations one uses additional relations  by introducing new form pa-
rameters [5]. We will consider the index n to be a form parameter and, to determine its time dependence, assume that
the differential equation (7) is exactly fulfilled at the point z = 0:
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We write the equations of the problem (11)–(13) in dimensionless form, introducing the following notation:
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We note that in this case, the temperature scale is the so-called "radiation-equilibrium temperature" at which the entire
heat incident on the surface is reradiated into space. As a result we obtain
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This system contains two parameters: α(p) ⁄ R2 and Φ(p). By changing the variables

ω = τΦ3 ⁄ 2 ,   ϕ = θΦ−1 ⁄ 4 ,   ψ = ηΦ3 ⁄ 4

it is reduced to a system with a single parameter, which, naturally, is more convenient for analysis:
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We first consider the case where the influence of reradiation can be disregarded. Ignoring ϕ4 as compared to
unity, from (16) and (17) we obtain
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The solution of this equation satisfying the boundary condition ω = 0, ϕ = 0 has the form
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Eliminating ϕ from (15), we obtain the equation for determining n:
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For ω → 0 we have n → 3, which conforms with [1]. Using (18) we find
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The stationary distribution of the surface temperature is realized when ω → ∞:
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The exact solution for the stationary state is given in [6]:
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Since the solution of the problem is approximate, for α we take the expression that gives the exact stationary
temperature distribution over the surface of the plate:
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4
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At small times, the approximate model overstates the temperature at the center of the spot by 2.3% and, thereafter,
predicts a more rapid establishment of its stationary level than the exact model. The limiting (stationary) distribution
of the surface temperature in the presence of reradiation will be found from (15) on condition that dϕ ⁄ dω → 0 (in this
case, n → ∞):
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The algebraic equation of the fourth degree (22) has a unique real positive root:
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Figure 1 shows the distribution of the limiting temperature over the radius θst(p) ⁄ R (curve 1) in the case
where there is no radiation from the surface. It is seen from (21) that this temperature profile depends on only p. The
distributions of the ratio of the stationary temperature in the case where there is radiation from the surface (θst i) and
in the case where it is absent (θst) (curves 2–4) are also presented in this figure. At small R, i.e., at small heat fluxes,
the temperature of the radiating surface is practically equal to that in the case where radiation is absent (curve 2 cor-
responds to θst i

 ⁄ θst C 1). At R D 1, owing to the significant role of reradiation, it is much lower than the temperature
of the nonradiating surface in the central part of the heated spot and approaches it at the periphery. At large R, the
difference between them increases significantly (here ϕst i D 1).

Fusion of the Surface under Nonuniform Heating. Fusion of a material begins when the melting tempera-
ture Tm is attained at the center of the focal spot. The minimum value of the heat flux qi0 min at which a point lying
on a given radius is heated to Tm will be determined not only by the radiation-equilibrium temperature but also by the
spreading of heat from the center of the spot in the radial direction. Let us find the quantity qi0 min(p). Taking into
account that in this case
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It is seen that the heat flux required to heat the surface to the melting temperature consists of two parts: the first part
goes to compensate for the radiation from the surface heated to the melting temperature, and the second part goes to
compensate for the heat spreading in the radial direction. As an example, in the calculations we used a ceramic speci-
men with the following thermophysical properties: ρ = 1500 kg/m3, λ = 0.6 W/(m⋅K), ε = 0.8, c = 1.200 J/(kg⋅K),
Lm = 1.5⋅105 J/kg, and Tm = 1900 K.

Figure 2 shows the dependence qi0 min(p) for heating a ceramic plate to Tm at r∗  = 1 cm. The minimum heat
flux for the beginning of melting at the center qi0 min is equal to 0.72 MW/m2. The graph presented also allows one
to find the limiting dimension of the melt hole pmax, which could be observed under infinitely long heating of the sur-

Fig. 1. Graphs of the stationary temperature distributions: 1) θst
 ⁄ R; 2–4)

θst i
 ⁄ θst [2) R = 0.1; 3) 1; 4) 10].
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face by a given heat flux. For example, at qi0 = 2 MW/m2, the maximum diameter of the melt hole would be some-
what larger than 2 cm.

Let us consider a situation where a melt film already exists. At each point on the boundary between the melt
and the solid body, the condition of energy conservation is fulfilled:

qiw = qw + ρLm 
dδm
dt

 . (24)

We assume that the thickness of the melt film δm is small and, in this case, the temperature in the melt is
distributed linearly along the coordinate z, i.e., the heat flux entering the melt reaches the boundary with the solid
body without changes:

qiw = qi0Φ (r) − εσT0
4
 = λ 
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Equations (24) and (25) allow one to determine the growth of the melt film with time if the heat flux qw is known.
We approximate the temperature profile by the function 
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It is well to bear in mind that passage from heating to melting is characterized by an abrupt change of boundary con-
ditions on the surface of the solid body — from conditions of the second kind to conditions of the first kind. In this
connection, in the present problem, one of the form parameters, namely the index n, changes spasmodically.

Fig. 2. Heat flux required for heating the points on the plate. qi0 min,
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The heat flux going into the solid body is equal to
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 .

Let us introduce the additional dimensionless variables
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As a result, we obtain the following system of equations to describe the process of melting:
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Thus, the calculation of the process of fusion of a material consists of two stages. At the first stage, system
(12)–(14) with initial conditions τ = 0, θ = 0, η = 0, and n = 3 is solved until the temperature of the surface along
the given radius becomes equal to the melting temperature (τ = τ1). At the second stage, we solve system (27)–(30)
with the initial conditions, i.e., the values of θ and η at the instant of time τ1, ηm = 0.

Figure 3 shows the evolution of the melt hole over a period of heating of 100 sec. During the initial period
of time, the diameter of the hole rapidly increases and reaches the practically limiting value even by the 20th second.
From this point on it only becomes deeper.

CONCLUSIONS

1. It is shown that the integral methods of calculation of the nonlinear problems of heat conduction can be
used for approximate calculation of the process of heat treatment of plane products in solar furnaces with the Gaussian
distribution of the radiant heat flux over the focal-spot area.

Fig. 3. Evolution of the melt hole on a ceramic plate with time for qi0 =
2⋅106 W/m2 (figures on the curves mean the time in seconds passed from the
beginning of heating). δm, mm.
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2. Simple formulas for estimating the limiting diameter of the melt hole and the minimum heat flux necessary
for melting the surface of the product have been obtained.

3. The procedure for calculating the dynamics of heating and fusion of plane products in the focal spot of a
solar furnace is described, and an example of calculation of the heat treatment of a ceramic plate is presented.

NOTATION

α, function introduced in Eq. (5); a2, thermal-diffusivity coefficient, m2/sec; Bm, dimensionless parameter of
melting heat; c, heat capacity, J/(kg⋅K); η, dimensionless thickness of the heated layer of the solid material in the pres-
ence of a melt film; I0, Bessel function of zero order; r and z, radial and axial coordinates; t, time, sec; T, tempera-
ture, K; Tm, melting temperature, K; λ, thermal-conductivity coefficient, W/(m⋅K); ρ, density, kg/m3; Lm, melting heat,
J/kg; θ and τ, dimensionless temperature and time; I∗  and t∗ , characteristic length and time, m and sec; T∗ , radiation-
equilibrium temperature, K; ε, radiating capacity; σ, Boltzmann constant, W/(m2⋅K); δ, characteristic thickness of the
heated layer, m; δm, thickness of the melt film, m; p, dimensionless radial coordinate; R, dimensionless parameter of
the Gaussian distribution of the heat flux; r∗ , parameter of the Gaussian distribution of the heat flux, m; q, heat flux,
W/m2; qi0, radiation flux, W/m2; qiw, heat flux at the boundary between the melt film and the solid wall, W/m2; Vm,
rate of growth of the melt film, mm/sec; n, index of approximation of the temperature with respect to the coordinate;
ω, ϕ, and ψ, dimensionless time, temperature and thickness of the heated layer in Eqs. (15)–(17). Subscripts: i, radia-
tion; m, melting; 0, surface of the product or the melt film; w, boundary between the melt and the solid wall; z, in
the direction of the axis; st, stationary.
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